

Bideford College

Part of the Launceston College Multi Academy Trust

Assessment, reporting and target setting 2016 - 17

Dear parents and carers,

This academic year many of our students will see a considerable change in the way in which we assess their performance and how we feedback this information to you and other interested stakeholders. These changes are the product of a period of research, consultation and preparation as we intend to combine strands of national best practice in assessment to support the students of Bideford College in making high rates of progress in all of their subjects.

Assessment - years 7, 8, 9 and 10

Rational for change

In 2014, the government announced that the use of national curriculum levels as a national framework for assessment would be terminated and instead allow schools and colleges to devise their own methods of tracking student progress towards GCSE. Parents of year 7 will have been particularly aware of this with the introduction of the new standardised score in Key Stage 2 SATS this summer. At the same time plans were announced to reform GCSE examinations replacing the traditional A* - G grades with a numerical, 1 - 9 scale.

The Key Stage 2 – 4 progress matrices

At Bideford College we have taken the decision this academic year to no longer assess students using national curriculum levels and instead assess all students on the 1 – 9 GCSE scale. This means that all students in years 7 – 11 will be assessed against the GCSE criteria allowing us to track student progress using only one system across their first five years with us. As well as ensuring consistent progress through the Key Stage 3 years, this will also allow students to see if they are on track to get their GCSE targets at the end of year 11. In order for students, tutors and parents to fully understand what this means, faculties across the College have produced descriptors of what skills students need to be able to master in order to reach each of the grades in all subjects. These Key Stage 2 - 4 progress matrices will be available for all subjects shortly on the college website (www.bidefordcollege.org/assessment).

Each GCSE grade will be broken down to give an indicator of the level of mastery each student is demonstrating.

Emerging (E) –students are able to demonstrate some of the skills at this GCSE grade but they are inconsistently applied

Secure (S) – students are consistently applying the skills to be working at this grade at GCSE

Advancing (A) – students are starting to demonstrate higher level skills, consistent with the grade above

For example a student who is assessed at a 3E is demonstrating some of the skills needed for a grade 3 but these are not yet consistently applied.

For students who are working below GCSE grading a 'P' will be entered by staff. This may be fine graded 'PA' to indicate that a student is working towards GCSE standard.

Year 11, 12 and 13 will continue to be assessed using GCSE, BTEC and A-level criteria as last year.

Reporting

Throughout the school year you will receive information about the progress of your student in four main ways:

- 1. Half termly progress report. This will provide the following information from all subject areas:
 - Current working at GCSE grade. This will be the accumulation of a student's most recent assessments, classwork and homework.
 - An end of year or end of course (Years 10, 11, 12 and 13) predicted grade. This will indicate where a student will be based on their working at grade and projected flightpath.
 - > A students end of year or end of course (Years 10, 11, 12 and 13) target
 - A students end of year or end of course (Years 10, 11, 12 and 13) challenge target (December onwards)
 - A target for improvement (Years 7 10 only). This will provide students with a subject specific area for improvement that would help them to make progress towards the next grade.
 - > An attitude to learning score
- 2. Parent's evening with subject teachers. This will provided the opportunity for a face to face discussion with a student's subject teacher. The dates for these are as follows:

Year	Date
7	8/6/17
8	4/5/17
9	2/3/17
10	19/1/17
11	13/10/16
12	16/3/17
13	1/12/16

- 3. A learning review day (9/2/16)
- 4. A tutor report

In addition year 12 and 7 parent-tutor evenings will take place early in the autumn half term.

Target setting and flight paths

At Bideford College we believe that all our students have the potential to achieve at least as well as any similar ability student in the UK. With this is mind, all our students are set subject specific targets based on the performance of students nationally in that subject with the same start point^{*}. This allows us to create five year flight paths for all students in all subjects. We can then create interim 'end of year' targets to ensure that students are 'on track' to reach at least their GCSE goals.

* start point = key stage 2 results

An example of a flight path for a student with a 4c or standardised score of between 98 and 99 in English (all subject flightpaths can be found on the college website (www.bideford.org/assessment).

In addition subject teachers will set challenge targets at the end of the Autumn term. These are aspirational to promote accelerated progress by students.

In the Sixth Form we use 'ALPS' to set end of course targets. These too are based on the progress of students nationally based on their GCSE results.

Hopefully, this guide will have provided you with a greater understanding of the information that we will report to you this academic year, as well as giving you an insight into how the targets are now being set. It is meant to be used in conjunction with the information found on our website. If you require any additional information about the new assessment, reporting and targeting setting systems we have put in place, please contact me via email at <u>cankers@bideford.devon.sch.uk</u>. If at any time you would like to discuss the attainment or progress of your student then please contact their tutor or Head of House.

With best wishes

Dr C Ankers Assistant principal curriculum and quality assurance

Bideford College Mathematics Faculty: Key Stage 2 – 4 Progress Matrix

In order to get a grade 1 at GCSE you must be able	In order to get a <u>grade 2</u> at GCSE you must be able	In order to get a <u>grade 3</u> at GCSE you must be able	In order to get a <u>grade 4</u> at GCSE you must be able	In order to get a <u>grade 5</u> at GCSE you must be able	In order to get a <u>grade 6</u> at GCSE you must be able	In order to get a <u>grade 7</u> at GCSE you must be able	In order to get a <u>grade 8</u> at GCSE you must be able	In order to get a grade 9 at GCSE you must be able
to	to	to	to	to	to	to	to	to
M1.1: Order positive and negative numbers	M2.1:Apply all 4 operations to whole numbers and decimals – both positive and negative	M3.1: Apply the 4 operations to fractions	M4.1: Check calculations using approximation and estimation	M5.1: Interpret fractions and percentages as operators	M6.1: Calculate with indices including fractional indices	M7.1: Simplify expressions involving surds	M8.1: Rationalise denominators	M9.1: Solve quadratic inequalities
M1.2: Understand and use the decimal place value system	M2.2: Use conventional notation for the priority of operations BIDMAS	M3.2: Use the concepts of powers, roots, highest common factor and lowest common multiple	M4.2: Calculate with fractions and indices	M5.2: Calculate and interpret standard form	M6.2: Calculate exactly using surds	M7.2: calculate upper and lower bounds of measurement	M8.2: Solve simultaneous equations where one is linear and the other quadratic	M9.2: Represent the solution set of inequalities on a number line, on a graph and using set notation
operations with whole numbers	expressions by collecting like terms	algebraic expressions through substitution, expanding brackets or factorising.	expressions and solve equations	quadratic and simultaneous equations	algebraic expressions	quadratic expressions	approximate solutions to equations using iteration	graphs
M1.4: Use fractions as parts of a whole and percentage as parts per 100	M2.4: Work with co-ordinates in all 4 quadrants	M3.4: Plot straight line graphs of linear functions	M4.4: Recognise, sketch and interpret the graphs of linear functions	M5.4: Sketch and interpret the graphs of different functions and graphs of real life situations	M6.4: Recognise and use geometric and quadratic sequences	M7.4: Solve quadratic equations using a variety of methods	M8.4: Recognise, sketch and interpret graphs of exponential and trigonometric functions	M9.4: Find the equation of a tangent to a circle
M1.5: Continue whole number sequences forwards and backwards	M2.5: Calculate using simple percentages and ratio	M3.5: Use scale factors, scale diagrams and maps	M4.5: Apply ratio to real contexts and problems	M5.5: Express a multiplicative relationship between 2 quantities as a ratio or a fraction	M6.5: Construct and interpret equations that describe direct and inverse proportion	M7.5: Identify the roots and turning points of quadratic functions	M8.5: Calculate gradients of graphs and the area under graphs	M9.5: Interpret the succession of two functions as a composite function

M1.6: Classify 2D and 3D shapes using mathematical properties	M2.6: convert freely between different units of measurement – both metric and imperial	M3.6: Solve problems involving percentage change	M4.6: Solve problems involving compound measures	M5.6: Solve problems involving direct and inverse proportion	M6.6: Apply the standard circle theorems	M7.6: Use vectors to construct geometric arguments and proofs	M8.6: Recognise and use the equation of a circle	M9.6: Apply the concepts of average and instantaneous rate of change
M1.7: Measure line segments of geometric figures	M2.7: Use conventional terms and notation for the properties of lines and shapes	M3.7: Use the 4 types of transformations on geometric figures	M4.7: Use the standard ruler and compass constructions	M5.7: Apply trigonometry to right angled triangles to calculate lengths and angles	M6.7: Identify, describe and construct congruent and similar shapes	M7.7: Apply Pythagoras theorem to 3D models	M8.7: Construct mathematical arguments and proofs	M9.7: Use circle theorems to prove related results
M1.8: Know and apply simple formulae to calculate area	M2.8: Apply angle facts and the properties of geometric figures	M3.8: Know and apply formulae to calculate area and volume	M4.8: Apply Pythagoras' Theorem to solve problems	M5.8: Solve loci problems	M6.8: Describe the changes and similarities achieved by combinations of transformations	M7.8: Know and apply the formulae of trigonometry for non-right angled triangles	M8.8: Interpret the reverse process as the inverse function	M9.8:
M1.9: Find the mode and median from a list of data	M2.9: Find the mean from a list of data	M3.9: Calculate probabilities of mutually exclusive events	M4.9: Calculate probabilities from venn and sample space diagrams	M5.9: Calculate probabilities of independent events using tree diagrams	M6.9: Calculate and interpret conditional probabilities	M7.9: Construct and interpret histograms	M8.9: Apply trigonometry to 3D models	M9.9:
M1.10: Draw and interpret lists, charts and tables	M2.10: Construct and interpret charts, graphs and tables	M3.10: Compare distributions using averages and range	M4.10: Draw and interpret scatter graphs, correlation and lines of best fit	M5.10: Draw and interpret cumulative frequency graphs	M6.10: Find the critical values from a cumulative frequency graph including drawing and interpreting box plots	M.710: Use the term 'frequency density' in relation to histograms	M8.10: Prove the standard circle theorems	M9.10: